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ABSTRACT

Engus are native to South and Southeast Asian regions. They are one of the favorite fruits consumed globally,
with an overall estimated consumption reaching up to 50.65 million metric tons in 2017. However, the pro-
duction of mango is usually severely affected by pests that attack the fruit, stem, root or mango leaf. Addressing
the need for an early stage automated or semi-automated pest identification system, the research presented in
this paper proposes an advanced machine learning (ML) technique for analyzing large-scale mango fields and
identification of the onset of biological threats using computer vision and deep-learning technologies. The ML
technique presented in the paper extends the pre-trained VGG-16 deep-learning model to supplement the last
layer with a fully connected network training of consisting of 2-layers. In addition, the research presented in the
paper also considers the real-world operational conditions commonly faced by Indonesian farmers for collecting
and processing visual information obtained from the Mango farms. The sparsity of the dataset availability for
effectively training deep-learning network is addressed through the application of data augmentation process
that is able to accurately recreate the conditions faced by the farmers. The overall accuracy of the proposed
training solution achieved is 73% on the validation dataset and 76% for the testing data. The application of the
augmentation transformation function leads to an improvement of 13.43% of accuracy on the testing data.

9 Introduction affected by pests, infestation of leaves is regarded to have the maximum

impact upon the food production. Among several plantation farms

The agricultural industry and in particular the farming community
has constantly faced the threat of pests and environmental disruptions
and is being considered a severe threat for food security and economic
stability for both farmers and general public (Strange & Scott, 2005).
Traditionally, such challenges are addressed through the local knowl-
edge of farmers which has been passed down through generations and
has paved way for mitigating some of the impact of pests. While the use
of advanced scientific tools and solutions have influenced been largely
adopted by various industrial sectors in the Indonesian region, the use of
mobile computation and cloud deployment of deep-leaming network
models for the automation of agricultural services has not been fully
exploited. Among the several types of agricultural plants which are

available in Indonesia, with an average quantity of Mango production
reaching up to 2.2 Million metric tons out of the total global production
of 50.65 Million metric tons as reported in 2017, the farming of Mango is
considered one of the key economic factors that influences the Indone-
sian GDP. In order to ensure a steady volume of production, it is vital to
ensure that the impact of possible diseases affecting the quality of the
fruit is mitigated at an early stage. Addressing such a critical challenge in
farming, the current practice adopted aims for the farmers to manually
inspect and observe the presence of leaves infestation. However,
following the increase in the growth of plantation areas of Mango within
Indonesia, it is no longer feasible for farmers to undertake large-scale
surveillance of Mango farms.
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gbs equent to the developments reported in the field of cloud
computing and smart handheld devices, there is an increasing interest in
the development of modem tools and techniques for automating Inte-
grated Pest Management (IPM) system and solution. As identified by Ha
in 2014 (1a, 2014), the objective of [PM is to design and develop a
system for managing pests in agricultural production that employs
multiple tactics in consideration of economic, environmental, ecological
and human health impacts. For the farmers to successfully adopt the
usage of such IPM systems, it is critical to ensure appropriate informa-
tion from the wide-scale farming regions are collected and processed in a
timely manner.

Therefore, addressing the broad scope of challenges in the cultiva-
tion of Mango within Indonesian farming community, the paper presents
a data augmentation process for improving the quality of the dataset
with real-world pests captured followed by the design of a deep-learning
network for creating a baseline for the classification of multi-class pests.
In addition, the paper also reports on the deployment of an overall ho-
listic framework for the farmers to identify the pests from the field. The
specific contributions of the paper include:

» to generate a dataset for leaves infestation that reflects the challenges
faced by real-world constraints

o to extend the sparse dataset through the proposal of data augmen-
tation techniques that improve the robustness of the proposed ma-
chine learning algorithm against overfitting

s to design and implement a fully connected deep-learning network
extending VGG-16 network for multiclass classification of pest
categories

o to evaluate the performance of the augmentation process with 3
different experimental runs

 to report on the developments of the mobile application-based cloud
deployment of machine learning model for pest-classification in the
farming region.

The paper is structured as follows. In Section 2, an overview of the
literature review is presented followed by the description of the pro-
posed data augmentation process for creating a large dataset that would
suitably enable the application of deep-learning techniques in Section 3.
In addition, the section also outlines the proposed framework for clas-
sifying 16-class Mango pest classification framework consisting of 15-
category of pests and healthy leaves based on the proposed refinement
to the VGG-16 network. The section concludes with an outline of the
overall workflow that enables farmers to effectively exploit the cloud-
based deployment of the proposed solution and receive in real-time
the classified output for the category of pests that might be affecting
the production of Mango. The experimental results of the data
augmentation process and subsequently the classification output from
the deep-learning network are presented in Section 4. In Section 4, a
brief discussion and summary of the proposed approach is presented.
The paper concludes with a remark on the proposed novelty and the
distribution of data assets in Section 5 along with an outline of the future
work.

2. Literature review

The scope of the research presented in the paper relates to the use of
data augmentation process and the classification models for categorizing
multi-class pests that affect Mango cultivation. Therefore, the literature
review presented in this section has been appropriately categorised into
two sub-sections. The first subsection outlines the reported techniques in
the literature on the use of data augmentation process for enriching the
sparse datasets, while the second subsection presents in detail the
various machine learning and deep-leaming algorithms that have been
reported in the literature for pest classification.
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2.1. Data augmentation

In order to build robust deep-leaming models, it is critical to ensure
the validation error during the training phase to be continually mini-
mised along with training error. One of the approaches that has been
successfully reported in the literature is data augmentation process
(Shorten & Khoshgoftaar, 2019). The augmented data will represent a
more comprehensive set of possible data points, thus minimizing the
distance between the training and validation set, as well as any future
testing sets. One of the common pitfalls in machine learning algorithms
is for the algorithm to overfit on the training dataset and thus lose the
ability to generalise the training model for new information that is
presented upon which the network has not been trained. In order to
address the robustness of the quality of training, several techniques have
been published for improving the generalization ability of these models.
The term ‘Generalizability’ refers to the performance difference of a
model when evaluated on previously seen data (training data) versus
data it has never seen before (testing data). Models with poor general-
izability have overfitted the training data. One way to discover over-
fitting is to plot the training and validation accuracy at each epoch
during training (Shorten & Khoshgoftaar, 2019).

In contrast, inspired by ManiFool (Paschali et al., 2019), present an
augmentation process that is performed by a line-search manifold-
exploration method which is hypothesised to learn the affine geometric
transformations that had led to the misclassification on an image, while
ensuring that it remains on the same manifold as the training data. This
augmentation method populates any training dataset with images that
lie on the border of the manifolds between two-classes and maximizes
the variance the network is exposed to during training. The data
augmentation process had been thoroughly evaluated on the chal-
lenging tasks of fine-grained skin lesion classification from limited data,
and breast tumour classification of mammograms. However, such
techniques have not been further explored in the context of agricultural
domain for multi-class classification problems.

In comparison, the image-based data augmentation process aims to
perform data transformations, that will result in the increase of problem
specification which will be used to train the network for achieving
generalisation. A brief review of the various image manipulations that
are commonly adopted in the literature for the development of data
augmentation strategies and policies like flipping, color space, cropping,
rotation, translation, noise injection and Colour space transformation.
Despite these publications, the challenge of pest recognition that affects
Mango cultivation in the Indonesian region remains an open problem.

2.2, Machine learning for multi-class pest classification

Following the recent innovations reported in the field of deep-
learning and machine leaming algorithms, a limited number of arti-
cles have been published addressing the challenge of pest detection
based on the image processing.

The cost of capturing visible scale images using low-cost visible
sensors has been identified as a suitable for detecting pest. As such, the
use of handheld devices including smart phones and tablets have been
increasingly receiving acceptance among farmers for collection of in-
formation and subsequent processing (Zhang, Wu, You, & Zhang, 2017).
The study of pests affecting the plants has been the areas of study for
many researchers and in particular the use of images captured from
smartphones has been accepted by farmers (Johannes, Seitz, & Se,
2017). Following the wide-scale data aggregation from the fields, the
application of statistical tools and machine learning algorithm for the
classification of multi-class pests has been reported in the literature
including the use of Support Vector Machine (SVM) (Avendano, Ramos,
& Prieto, 2017), Neural networks (Srdjan Sladojevic, Marko Arsenovic,
Andras Anderla, 2016), deep learning (Lu, Yi, Zeng, Liu, & Zhang, 2017)
(Mohanty, Hughes, & Salathé, 2016) among others.

Subsequent to the increasing popularity of deep-learning network
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1

ﬂwgud}r authors report that, the type of disease was limited to 10 types
of diseases that most often attacked rice and produced an accuracy of
95.48%. In the context of agriculture, the number of cultivated plants
vary in their origin along with environmental impact on climate and
other parameters. The evaluation of the pest and disease classification
techniques as reported in the literature considers a limited type of
classes that are detected. For example (Zhang et al., 2017) presented the
research formulated to detect pests and diseases affecting only one type
of apples, cucumbers, tulips, and rice.

The research presented in this paper aims at addressing the needs of
the farmers with accessibility to real-time development and deployment
of engineers other than for maintenance. In the next section, a detailed
outline of the various techniques discussed is reported for the pest
recognition system.

3. Proposed framework for pest recognition system

The proposed framework for pest recognition relies on the processing
of real-world images captured with low-cost handheld devices from the
Mango farms. One of the crucial requirements that is addressed in the
research in the lack of resources for pre-processing the images captured
by farmers. Thus, the image from the farm is processed as is and thus
presents a set of unique challenges with complex background and partial
occlusions and overlapping leaf structures upon other pests Therefore,
addressing these challenges, the training of the pest recognition frame-
work is carried out using data augmentation techniques such as noise,
blur and contrast along with affine transformations. The rest of the
section provides a detailed outline of the data generation process carried
out in the paper for training the pest recognition framework.

3.1. Data generation

One of the key contributions of the research presented in the paper is
the dataset development for training multi-class pest infestation
network. As mentioned earlier, the pest infestation process is unique to
the regional environment and the plantation that is being affected, the
data collection was conducted through samples aggregated from mango
plants throughout Indonesian archipelago. A range of samples that have
been collected from the data collection is presented in Fig. 1, with the
left most image representing the original image and the rest of the im-
ages in Figure represent some form of pest infestation.

The overall cultivation of the Mongo trees has been affected by a
total of 181 pests including disease-causing pathogens and weeds out of
which, 80% are commonly found in Indonesia (Suputa et al., 2015). The
infestation of these pests tends to cause farm for various parts of the
Mango cultivation including leaves, fruits, branches, stems and roots.
Among these pests, 48 distinct types of pests have been identified to
harm the leaves of the Mangp trees globally. Therefore, in the research
presented in the paper, 15 unique categories of pests that are identified
to cause the most harm to Mongo cultivation are being studied and
analyzed. The selected 15-pest categories also result in the structural
deformity of the Mango leaves, facilitating the farmers to quickly
contain the spread of the pest across the farm. Among the various
challenges, researchers’ carryout studies on pest infestation

Blur + Affine transform
Original
dataset and Contrast + Affine Augmented

augmented transform images
dataset
Noise + Affine
I transform

ﬁ. 2. Data augmentation workflow for training deep-learning
network models.
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Eanagement often suffer from the limited amount of resources available
for carrying out large-scale tests for automating the detection and
categorization of pests’ classes. These pests, Apoderus javanicus, Aula-
caspis tubercularis, Ceroplastes rubens, Cisaberoptus kenyae, Dappula tertia,
Dialeuropora decempuncta, Erosomyia sp., Icerya seychellarum, Ischnaspis
longirostris, Mictis longicomis, Neomelicharia sparsa, Orthaga evadrusalis,
Procontarinia matteiana, and Valanga nigricomnis, are commonly occurring
in Indonesia and have been identified as a threat to the economic wel-
fare among trading partner countries, such as Australia (Australian
Government Department of Agriculture and Water Resources).

As an instance, the population of Apoderus javanicus increases from
August to September (Manjunath, 2018). There is high population
density of Aulacapsis tuberculari during April to August (Salem, Mah-
moud, & Ebadah, 2015). Cisaberoptus kenyae is recorded every year and
the highest populations have been witnessed between January and
August (Abou-Awad, Metwally, & Al-Azzazy, 2009). The most serious
damage of D. tertia larvae often appears between June and July (Chang
et al., 2018). High populations of Dialeuropora decempuncta is wit-
nessed between March to June and low populations from October to
January (Singh, Maheshwari, & Saratchandra, 2005). Icerya seychella-
rum exists every year, and the population increases from March and
subsequently decreases from September (Mohamed, 2015).

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens,
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been
formally recorded in the literature, but based on the observations in the
mango farms, these pests are always found at each time of observation.
Based on observations in Indonesia the existence of this pest is always
found throughout the year.

There is a severe lack of visual examples from the suspicious
destructor as this pest only appears occasionally but causes severe eco-
nomic damage to the overall Mango cultivation. An overview of the
different types of pests and associated number of image samples
collected from the Indonesia has been tabulated in Table 1. These pests,
Apoderus  javanicus, Aulacaspis tubercularis, Ceroplastes rubens, Cis-
aheroptus kenyae, Dappula tertia, Dialeuropora decempuncta, Erosomyia
sp., Icerya seychellarum, Ischnaspis longirostris, Mictis longicornis, Neo-
melicharia sparsa, Orthaga evadrusalis, Procontarinia matteiana, and Val-
anga nigricomis, are commonly occurring in Indonesia and have been
identified as a threat to the economic welfare among trading partner
countries, such as Australia (Australian Government Department of
Agriculture and Water Resources).

As an instance, the population of Apoderus javanicus increases from
August to September (Manjunath, 2018). There is high population
density of Aulacapsis tuberculari during April to August (Salem et al.,
2015). Cisaberoptus kenyae is recorded every year and the highest pop-
ulations have been witnessed between January and August (Abou-Awad
at al., 2009). The most serious damage of D. tertia larvae often appears
between June and July (Chang et al., 2018). High populations of Dia-
leuropora decempuncta is witnessed between March to June and low
populations from October to January (Singh et al., 2005). Icerya sey-
chellarum exists every year, and the population increases from March
and subsequently decreases from September (Mohamed, 2015).

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens,
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been
formally recorded in the literature, but based on the observations in the
mango farms, these pests are always found at each time of observation.
Based on observations in Indonesia the existence of this pest is always
found throughout the year. The images depicted in the table represent
the primary data that was captured from infested leaves from Man go
farms. In order to highlight the visual characteristics of the pests, the
collected images were cropped to indicate part of the pest specific
characteristic. The images used in the experiments were taken real time
from infested leaves, without any preprocessing.

Despite the availability of a significant image database, the amount
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Procontarinia
Matteiana

Blur 5, 6
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Icerva Seychellarum

Blur5, 4
Affineyz 234

Contrast 1.5, 3
Affine yz 39

AN

Noise 1, 4
Affine y 65

1g. 3. Sample images in the augmented dataset.

ofgta is not enough to develop advanced classification models based on
deep learning. In addition, due to the micro-differences between the
various types of pest infestation the use of statistical machine learning
techniques based on pixel-level hand-crafted features has not yielded
high accuracy for the multi-class classification of pests. Therefore, the
use of data augmentation techniques has been adopted for improving the
quality of the data for the training of deep-learning network. The high-
level outline of the image manipulation steps adopted for data
augmentation in this paper is presented in Fig. 2. For each image
collected from the Mango cultivation field, the samples are subjected to
five mathematical operations namely (i) noise; (ii) blur; (iii) contrast
and (iv) affine transformation. The novelty of the proposed approach is
the construction of the sequential and non-sequential workflow in which
each of the mathematical operators is performed in several
combinations.

The implementation framework of the augmentation sequence is
presented in Fig. 2. The original dataset from obtained from the Mango
farm has been subjected to three distinct forms of augmentation process.
The steps have been carefully chosen to ensure the resulting outcome is
subsequently used to train the deep-learning network that is able to
avoid overfitting to the given training dataset. In addition, it is also
worth noting that the selection of the various data augmentation steps
and sequences that have been considered are inspired from the data
collection process as undertaken by the farmers, in which the collected

samples have been found to be rotated, blurred and illumination
changes.

» Noise Addition:

In order to achieve robust generalisation of the image dataset, the
next step in the data augmentation process included in the introduction
of noise levels based on Gaussian distribution as presented in (Das et al.,
2016). In order to ensure the visibility of the random noise the random
number is multiplied by a regularization constant. The mean parameter
is randomly generated between {0.1, 0.2, 0.3, 0.4}, meanwhile the de-
viation parameter between {0,0.1, ..., 0.5}

« Blur:

The next data augmentation process implemented in the paper re-
lates to blur and often represents the lack of auto-focus functionality in
the collection of data samples. Therefore, the blur parameters that are
used to transform the images also follow the Gaussian distribution of the
parameters. This implementation of the Gausian blur was carried out by
kernel size 5 and standard deviation {2, 3, 4, 5, 6, 7}

+ Contrast:
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E. 4. VGG-16 Architecture with the original head is removed.

Contrast variations (Szeliski, 2010) are generated using contrast
parameter {1, 1.5} and brightness {0,1,2,3,4,5}.

» Affine Transformation:

The affine transformation is used to simulate images rendered from
different camera positions and projections.

Sample outcomes of the data augmentation process are presented in
Fig. 3. Here, three examples from the original dataset has been selected
upon which three data distortion operations, as presented in Fig. 2, have
been applied. In total, for every image in the original dataset, additional
150 images have been generated through the presented augmentation

process.

3.2. Proposed machine learning framework

Following the dataset generation step, the next stage in the pro-
cessing relates to the training of the deep-leaming network for the
classification of different types of pests that affect Mango plants in
Indonesia. In order to achieve this, the VGG-16 network architecture
(Simonyan & Zisserman, 2014) has been updated to replace the last
block containing the softmax classification with a fullyconnected layer
(FCL) and train the network with the image features extracted from the
VGG-16. The weights of the VGG-16 network have been preserved from
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Fig. 5. The new head of VGG-16.

1

ﬂlep.re—tlai.ned model. The extracted features are flattened and used as
input to the FCL layer network which consists of 2-layers. The first layer
is activated by the ReLU function and consists of 256 nodes, followed by
the second layer consisting of 16 nodes activated by softmax. The output
of the network classifies the pest model. The VGG-16 network archi-
tecture is presented in Fig. 4 followed by the proposed training frame-
work depicted in Fig. 5.

3.3. Implementation specification
The overall implementation of the FCL network is achieved in Ten-

sorFlow using Keras library (Chollet Francois, 2015). The training of the
Pest classification has been achieved through by establishing a robust

visual correspondence between the various types of the pests. The
training parameters utilized include a learning rate of 1 x 10" and
epoch of 50. The loss function has been calculated using binary cross-
entropy model.

4. Result and discussion

The overall original dataset has been divided into three subsets
namely (i) training; (ii) validation and (iii) testing with 60%, 20% and
20% respectively. As the quantity of datasets available is not enough to
robustly train the deep-learning network models, the process of data
augmented as presented in Section 3, is carried out. Therefore, the
objective of the experimentation process is to validate both the
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1
performance of the augmentation process and the proposed VGG-16 dataset is divided into 3 parts with 310 images as training data, 103
network improvement with the FCL network for training on both orig- images as validation data, 97 images as testing data. The objective of
inal and augmented dataset for improved classification process. the experiment is to calculate the baseline performance of the system

when the proposed network is trained using the limited number of
images, validated and tested with originally captured images without
any augmentation. The distribution of the dataset is presented in
Fig. 6.

Version 1: the image dataset consists of 46.500 samples as training
data following the application of the data augmentation process. The
objective of the scenario is to evaluate the performance of the
network training while the validation and testing sequences

4.1. Experimental setup

In order to evaluate the impact of data augmentation, we carry out
three experimental scenarios, as below:

e Version 0: the dataset consists of 510 original images as captured
from the mango cultivation farms in Indonesia. The overall image
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represent the original dataset without data augmentation. The data
augmentation process is carried out using the framework presented
in Fig. 2, and consists of noise addition, blur, contrast and affine
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2.

Performance of the proposed network model for 16-class Mango pest
classification.

Experiment Validation Accuracy Testing Accuracy
Version 0 T 67%
Version 1 75% BEY
Version 2 71% Td¥

1

!ansformaﬁon operation. The overall distribution of the dataset is
presented in Fig. 7.

Version 2: The dataset consists of 62.047 images in total. It consists of
46.500 training images as a result of the augmentation process of 510
original training images. The validation data consists of 15.450 im-
ages as a result of the augmentation for the original validation data.
We keep the testing dataset without any modification to keep the
original data from the field. The distribution of the dataset is pre-
sented in Fig. 8.

4.2. Experiment result

The training of the VGG-16 network with FCL network layer is pre-
sented in this section. The training of the FCL network layer is carried
out for 50 epochs. The graphical representation of the training accuracy
and the validation accuracy for each experimental run is presented in
Fig. 9, Fig. 10 and Fig. 11 respectively. For the training of version 0, the
training accuracy reaches a saturation at approximately 18 epochs,
while the validation accuracy oscillates between 0.63 and 0.70 starting
from 15 epochs.

Following the training of the version 0, the experimental setup of
version 1, with training performed with the augmented data is presented
in Fig. 10. As opposed to the use of validation data from the augmen-
tation process, the experimental run uses the original data and ground
truth to evaluate the training outcomes. As expected, the validation
results have not been observed to be stabilised, with each the progres-
sion of each epochs. Despite the presence of the original data within the
augmented dataset, the validation accuracy oscillates between 0.75 and
0.70 with a global minimum achieved at epoch 47 resulting in less than
67% accuracy. On the other hand, the training accuracy saturates
around epoch 15, resulting in the zero slope for the training accuracy
plot.

Finally, the training of the third experimental run is presented in
Fig. 11. The validation model uses the augmented dataset like the ones
used in the training of the FCL network with the VGG-16 network fea-
tures extracted from the pre-trained model. The training outcomes
resemble the version 0 model, which also uses a homogenous data
sources for the training and validation process. The oscillations in the
accuracy of validation dataset is minimal and is approximately 0.70 with
0.3 tolerance. The training accuracy saturates around 15 epochs, like the
version 0 and version 1 training models.

4.3. Experimental results

Following the training of the proposed network architecture with
VGG-16 and FCL, the overall performance of the network upon testing is
formulated in Table 2. Based on the experiment, it is shown that the
version 2 experiments which uses augmented images for training, vali-
dation and testing yields the best performance. The improvement in the
accuracy of the experiment is attributed to the overall leaming distin-
guishability of features learnt by the network. Both validation and
testing accuracies represent how well the model can generalize or pre-
dict an unseen data. As opposed to the use of validation data, the testing
data represents the images captured from the real-world data. The
comparative performance of validation accuracy in version 2 experi-
ments showcases the importance of data augmentation process in
training the network model. As mentioned earlier, the version 2
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1
gperimt uses the augmented image sequences for both training and consisting of 8 cores. The training model was stored on the SSD M.2 hard
validation, while the version 0 and version 1 experiment run rely on the disk. The overall training period for each of the experimental dataset
use of original data for the validation. We attribute the increase in version 0, version 1 and wversion 2 is 74 s, 2,175 s and 7, 116 s
performance to the generalisability of the proposed network for learning respectively.

distinguishable features available through the data augmentation pro- In addition to the performance assessment of the classification
cess, which was not available in version 0 and version 1 runs. framework on the cumulative outcome of the proposed data augmen-
In addition, the overall comparison of version 0, version 1 and tation framework, a detailed assessment of each data augmentation

version 2 experimental results for precision, recall and Fl-measure is function is carried out. The objective of this evaluation is to evaluate the
presented in Figs. 12 and 13 and 14. The overall training of the VGG-16 overall contribution of the selected data augmentation function namely
based proposed FCL network was carried out using the Titan V GPU with noise, blur, contrast and affine transform towards improving the clas-
12 GB Memory, capable of processing 640 of tensor cores. The training sification performance of the proposed framework. To achieve this
server was operated with 9th Generation Intel processor 9900 K objective, a set of 18 different data sets were generated, with an

10
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Fig. 15. F1 measure for blur, noise and contrast evaluation of data aug ion process.

g‘laustive combination of all four data augmentation functions. Each of the data augmentation functions in enhancing the classification per-
dataset set has been processed through the classification framework formance. The application of contrast and affine transform results in an
with the training of the network carried out using the data augmented overall improvement of 13.43% in the classification accuracy. However,
images. The testing images used for the evaluation remain the same as the application of noise and blur has resulted in the decrease of classi-
version 2 dataset. The proposed scenario achieved the best performance fication accuracy by 1.49%. Similar decrease in classification accuracy
at 76% of accuracy on contrast and affine transformation experiments. of 2.98% is also noted for the application of blur and affine transforms
InFig. 15, a percentage comparison of each data augmentation function along with the application of noise, blur and contrast. The detailed
against the classification accuracy is evaluated against the baseline evaluation of the result indicates the positive outcome of the two data
classification performance when applied without the data augmentation augmentation functions namely contrast and affine, which has led to the
process. The analysis of results highlights the disproportional influence overall improvement of the classification accuracy. Furthermore, the

11
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Fig. 16. Performance of data augmentation against training data.

1
application of the contrast function upon the images are limited to the
scope of natural light in which the images are expected to be captured.
This is achieved by the use of multiplication and addition transformation
function consisting in total of 12 filters with a ranging from 1 to 1.5 and
p ranging between 0 and 5 was applied on the original image. Similarly,
the application of the affine geometric transform is carried out using
three dimensional rotational across x, y and z axis. The rotational
transform is applied throughout the 360 degrees in both y and z axis. The
final dataset has been filtered for transpose images as they do not add
value to valuable leaming features. The implementation of the data
augmentation functions was carried out using OpenCV Library (OpenCV
Library).

Following the determination of disproportional influence of data

augmentation function upon the multiclass pest classification frame-
work, an additional experiment has been carried out that maps the
classification performance against the quantity of the training data. As
noted in the previous experiment, the application of contrast and affine
transform across y- and z-axis has yielded an improvement of 13.43%
improvement against the baseline evaluation without the use of data
augmentation framework. Thus, in this experiment, our aim is to eval-
uate the quantity of the training data required to achieve the best per-
formance in the multi-class pest classification. Therefore, to achieve this
objective, the angle of rotation in y- and z-axis is systematically carried
out for each of the 310 images from the training dataset. The training
data was generated progressively by systematic variation in the number
of rotations applied across two axes with a maximum of 100 different

Choose image source
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[ Pt
483740 0 10

Pt has teen mucceastuty idertided

PEST : APODERUS JAVANICUS
PROBABLITY : 99 8F%
ELAPEE TIUE 1.0

IMG-20191011-WAD.
BT

¢

Fig. 17. Mobile (Android) application screen as used by Mango Farmers.
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Fig. 18. Segmented image regions consisting of pests.
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gmbinations applied across 360 degrees. For each of the trans-
formation, the resultant dataset was filtered against transpose images as
they do not add any additional value. The F1-measure for each training
dataset is presented in Fig. 16. The classification performance saturates
at 77%. Following the exhaustive list of 100 different angle variations
applied on both y- and x-axes, further increase in the training data has
saturated the performance of the multi-class pest classification frame-
waork. The graphical model represents the variations of the pest classifier
which peaks at 83,046 training samples. The computational time
required for each dataset is also presented along the z-axis.

5. Summary discussion and future work

Following the results presented, Orysomia sp has resulted in 0%
precision and recall on the original dataset testing (version 0). However,
the classification performance of the said class improves upon the
application of the augmentation process, as verified in version 1 and
version 2 runs of the experiments. Similarly, the overall classification of
the multi-class pests has shown to have improved by the proposed VGG-
16 based FCL network model, upon the application of the augmentation
process. The overall multi-class classification of 16-class classification
model has yielded in an increase of 13.43% accuracy in comparison to
the baseline performance of the proposed approach. The increase in the
performance is intuitively attributed to the use of data augmentation
process with the combination of contrast and affine transform. Although
in the literature, there are reports of using data augmentation process for
improving the classification performance from 0.2% to 4.6% (Kobaya-
shi, Tsuji, & Noto, 2019), to the best of our knowledge, such techniques
have not been reported for multi-class pest classification. The process of
the augmentation as proposed with the cascaded approach of geometric
transformations of the pest infected data has yielded improved the
robustness of the training model. Following the evaluation of the various
models, the best performing model has been selected for the integration
into the mobile platform, which has been used by the Mango farmers in
Indonesia for the identification of pest categories. The implementation
of the various user interactive screens has been presented in Fig. 17. In
order to reduce the operational cost of the overall proposed framework,
the evaluation of the testing framework has been achieved on the CPU
system (with the training carried out on the GPU units). The cloud-based
deployment of the CPU-only Tensorflow with Keras library has resulted
in the computational time between 2 s to 2.99 s for the classification of
the input image and provide a response to the mobile application.

Following the review of the results, an extended approach is also
being considered for enhancing the quality of the data augmentation
process. In this approach, the appearance of the pest regions is
segmented as foreground along with the structural deformity experi-
enced by the leaves. The segmented regions of the pest are subjected to
data augmentation framework presented in the paper. The training of
the deep-leaming network is carried out with the superimposed
augmented pest images as foreground against the naturally appearing
background regions. An initial outcome of such an approach is presented
in Fig. 18. The training process to be carried out on such dataset will
facilitate the deep-learning models to distinguish between the fore-
ground pest and the background images, thus leading to the improve-
ment in performance accuracy. In addition, we will also evaluate the
performance of the network training against the overfitting as presented
in Figs. 9-11. The approach will be further invested as a part of our
ongoing research activity.

13

6. Conclusion

In this paper, three contributions have been presented. The study of
augmentation process for increasing the limited availability of pest
infected dataset complemented by the proposed architecture for the
training of multi-class pest classification model. The proposed classifi-
cation framework extends the VGG-16 framework and extracted the
deep-learning features from the network. The extracted features are
further trained through a 2-layer fully connected network for achieving
the classification outcome. The systematic evaluation of the proposed
approaches was achieved based on three different datasets. The com-
bination of these datasets includes the classification on the original data
without augmentation process resulting in 67% of the overall accuracy,
while the evaluation on the augmented data process has resulted in 76%
overall accuracy with the application of contrast and affine transform.
The additional experimental results also indicate the impact of different
data augmentation functions on the classification performance. The final
contribution provides an outline of the overall data workflow process
integrated as a mobile application that can be directly used by the
Mango farmers in Indonesia. The future work will include a detailed
analysis of the deep-leaming features extracted from multiple-pre-
trained models and evaluate the quality of these features. In addition,
the network architecture models will be further developed towards
improving the performance of the classification model.
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ABSTRACT

Mangos are native to South and Southeast Asian regio ey are one of the favorite fruits consumed globally,
with an overall estimated consumption reaching up to 50.65 million metric tons in 2017. However, the pro-
duction of mango is usually severely affected by pests that attack the fruit, stem, root or mango leaf. Addressing
the need for an early stage automated or semi-automated pest identification system, the research presented in
this paper proposes an advanced machine learning (ML) technique for analyzing large-scale mango fields and
identification of the onset of biological threats using computer vision and deep-learning technologies. The ML
technique presented in the paper extends the pre-trained VGG-16 deep-learning model to supplement the last
layer with a fully connected network training of consisting of 2-layers. In addition, the research presented in the
paper also considers the real-world operational conditions commonly faced by Indonesian farmers for collecting
and processing visual information obtained from the Mango farms. The sparsity of the dataset availability for
effectively training deep-learning network is addressed through the application of data augmentation process
that is able to accurately recreate the conditions faced by the farmers. The overall accuracy of the proposed
training solution achieved is 73% on the validation dataset and 76% for the testing data. The application of the
augmentation transformation function leads to an improvement of 13.43% of accuracy on the testing data.

1. Introduction

gsThe agricultural industry and in particular the farming community
constantly faced the threat of pests@@ld environmental disruptions
or food security and economic
stability for both farmers and general public (Strange & Scott, 2005).
Traditionally, such challengéralre addressed through the local knowl-

passed down through generations and

and is being considered a severe threat

edge of farmers which has

affected by pests, infestation of leaves is regarded to have the maximum
impact the food production. Among several plantation farms
available in Indonesia, with an average quantity of Mango production
reaching up to 2.2 Million metric tons out of the total global production
of 50.65 Million metric tons as reported in 2017, the farming of Mango is
considered one of the key economic factors that influences the Indone-
sian GDP. In order to ensure a steady volume of production, it is vital to
ensure that the impact of possible diseases affecting the quality of the

has paved way for mitigating some of the impact of pests. While the use
of advanced scientific tools and solutions have influenced been largely
adopted by various industrial sectors in the Indonesian region, the use of
mobile computation and cloud deployment of deep-leaming network
maodels fi e automation of agricultural services has not been fully
exploited. Among the several types of agricultural plants which are

fruit is mitigated at an early stage. Addressing such a critical challenge in
farming, the nt practice adopted aims for the farmers to manually
inspect and observe the presence of leaves infestation. However,
following the increase in the growth of plantation areas of Mango within
Indonesia, it is no longer feasible for farmers to undertake large-scale
surveillance of Mango farms.
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Subsequent to the g\relopmerlts reported in the field of cloud
computing and smart handheld devices, there is an increasing interest in
the development of modem tools and techniques for automating Inte-
grated Pest Management ) system and solution. As identified by Ha
in 2014 (I1a, 2014), the objective of IPM is to design and develop a
system for managing pests in agricultural production that employs
multiple tactics in consideration of economic, environmental, ecological
and human health impacts. For the farmers to successfully adopt the
usage of such IPM systems, it is critical to ensure appropriate informa-
tion from the wide-scale farming regions are collected and processed in a
timely manner.

Therefore, addressing the broad scope of challenges in the cultiva-
tion of Mango within Indonesian farming community, the paper presents
a data augmentation process for improving the quality of the dataset
with real-world pests captured followed by the design of a deep-learning
network for creating a baseline for the classification of multi-class pests.
In addition, the paper also reports on the deployment of an overall ho-
listic framework for the farmers to identify the pests from the field. The
specific contributions of the paper include:

» to generate a dataset for leaves infestation that reflects the challenges
faced by real-world constraints

o to extend the sparse dataset through the proposal of data augmen-
tation techniques that improve the robustness of the proposed ma-
chine learning algorithm against overfitting

s to design and implement a fully connected deep-learning network
extending VGG-16 network for multiclass classification of pest
categories

o to evaluate the performance of the augmentation process with 3
different experimental runs

» to report on @:levelopments of the mobile application-based cloud
deployment of machine learning model for pest-classification in the
farming region.

The paper is structured as fllows. In Section 2, an overview of the
literature review is presented tollowed by the description of the pro-
posed data augmentation process for creating a large dataset that would
suitably enable the application of deep-learning techniques in Section 3.
In addition, the section also outlines the proposed framework for clas-
sifying 16-class Mango pest classification framework consisting of 15-
category of pests and healthy leaves based on the proposed refinement
to the VGG-16 network. The section concludes with an outline of the
overall workflow that enables farmers to effectively exploit the cloud-
based deployment of the proposed solution and receive in real-time
the classified output for the category of pests that might be affecting
the production of Mango. The experimental results of the ﬁ
augmentation process and subsequently the classification output
the deep-learning network are presented in Section 4. In Section 4, a
brief discussion and summary of the proposed approach is presented.
The paper concludes with a remark on the proposed novelty and the
distribution of data assets in Section 5 along with an outline of the future
work.

2. Literature review

The scope of the research presented in the paper relates to the use of
data augmentation process and the classification models for categorizing
multi-class pests that affect Mango cultivation. Therefore, the literature
review presented in this section has been appropriately categorised into
two sub-sections. The first subsection outlines the reported techniques in
the literature on the use of data augmentation process for enriching the
sparse ets, while the second subsection presents in detail the
various machine learning and deep-leaming algorithms that have been
reported in the literature for pest classification.
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2.1. Data augmentation

In order to build robust deep-leaming models, it is critical to ensure
the validation error during the training phase to be continually mini-
mised along with training error. One of the approaches that has been
successfully reported in the litera data augmentation process
(Shorten & Khoshgoftaar, 2019). The augmented data will represent a
more comprehensive set of possible data points, thus minimizing the
distance between the training and validation set, as well as any future
testing sets. One of the common pitfalls in machine learning algorithms
is for the algorithm to overfit on the training dataset and thus lose the
ability to generalise the training model for new informa that is
presented upon which the network has not been trained. In order to
address the mbustl& of the quality of training, several techniques have
been published for improving the generalization ability of these models.
The term ‘Generalizability’ refers to the performance difference of a
model when evaluated on previously seen data (training data) versus
data it has never seen before (testing data). Models with poor general-
izability have overfitted the training data. One way to discover over-
fitting is to plot the training and validation accuracy at each epoch
during training (Shorten & Khoshgoftaar, 2019).

In contrast, inspired by ]\aiFool (Paschali et al., 2019), present an
augmentation process that 1s performed by a line- h manifold-
exploration method which is hypothesised to learn the atfine geometric
transformations that had led to the misclassification on an image, while
ensuring that it remains on the same manifold as the training data. This
augmentation method populates any training dataset with images that
lie on the border of the manifolds between two-classes and maximizes
the variance the network is ex;?d to during training. The data
augmentation process had been thoroughly evaluated on the chal-
lenging tasks of fine-grained skin lesion classification from limited data,

breast tumour classification of mammograms. However, such
techniques have not been further explored in the context of agricultural
domain for multi-class classification problems.

In comparison, the image-based data augmentation process aims to
perform data transformations, that will result in the increase of problem
specification will be used to train the network for achieving
generalisation. A brief review of the various image manipulations that
are commonly adopted in the literature e development of data
augmentation strategies and policies like flipping, color space, cropping,
rotation, translation, noise injection and Colour space transformation.
Despite these publications, the challenge of pest recognition that affects
Mango cultivation in the Indonesian region remains an open problem.

2.2, Machine learning for multi-class pest classification

Following the recent innovations reported in the field of deep-
learning and machine leaming algorithms, a limited number of arti-
cles have ublished addressing the challenge of pest detection
based on the image processing.

The cost of capturing visible scale images using low-cost visible
sensors has been identified as a suitable for detecting pest. As such, the
use of handheld devices including smart phones and tablets have been
increasingly receiving acceptance among farmers for collection of in-
formation and subsequent processing (Zhang, Wu, You, & Zhang, 2017).
The study of pests affecting the plants has been the areas of study for
many researchers and in particular the use of images captured from
smartphones has been accepted by farmers (Johannes, Seitz, & Se,
2017). Following the wide-scale data aggregation from the fields, the
application of statistical tools and machine learning algorithm for the
classification of multi-class pests has been reported in the literature
including the use of Support Vector Machine (SVM) (Avendano, Ramos,
& Prieto, 2017), Neural networks (Srdjan Sladojevic, Marko Arsenovic,
Andras Anderla, 2016), deep learning (Lu, Yi, Zeng, Liu, & Zhang, 2017)
(Mohanty, Hughes, & Salathe, 2016) among others.

Subsequent to the increasing popularity of deep-learning network
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Fig. 1. Example of Leaves infestation.

models that have been applied across other critical domains such as
medical, object classification, the use of deep-learning algorithms has
been proposed in the literature for the classification of pests (Mohanty
et al., 2016) with results reported in a classification with a fairly good

Table 1
Types of Pests affecting Mango farms in Indonesia.
Apoderus javanicus Ischnaspis longirostris

level of accuracy at 99.35% of the 26 types of plant diseases commonly
affecti pproximately 14 agricultural commodities. In particular, the
use of volution Neural Network (CNN) for the classification of plant
diseases affecting rice produce has been examined by (Lu et al., 2017). In

Aulacaspis tubercularis

Procon-tarinia matteiana Dialeuropora
decempuncta

Icerya seychellarum
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the study authors report that, the type of disease was limited to 10 types
of diseases that most often attacked rice and produced an accuracy of
95.48%. In the context of agriculture, the number of cultivated plants
vary in their origin along with environmental impact on climate and
other parameters. The evaluation of the pest and disease classification
techniques as reported in the literature considers a limited type of
classes that are detected. For example (Zhang et al., 2017) presented the
research formulated to detect pests and diseases affecting only one type
of appl@Wcucumbers, tulips, and rice.

The research presented in this paper aims at addressing the needs of
the farmers with accessibility to real-time development and deployment
of engineers other than for maintenance. In the next section, a detailed
outline of the various techniques discussed is reported for the pest
recognition system.

3. Proposed framework for pest recognition system

The proposed framework for pest recognition relies on the processing
of real-world images captured with low-cost handheld devices from the
Mango farms. One of the crucial requirements that is addressed in the
research in the lack of resources for pre-processing the images captured
by farmers. Thus, the image from the farm is processed as is and thus
presents a set of unique challenges with complex background and partial
occlusions and overlapping leaf structures upon other pests Therefore,
addressing these challenges, the training of the pest recognition frame-
work is carried out using data augmentation techniques such as noise,
blur and contrast along with affine transformations. The rest of the
section provides a detailed outline of the data generation process carried
out in the paper for training the pest recognition framework.

3.1. Data generation

One of the key contributions of the research presented in the paper is
the dataset development for training multi-class pest infestation
network. As mentioned earlier, the pest infestation process is unique to
the regional environment and the plantation that is being affected, the
data collection was conducted through samples aggregated from mango
plants throughout Indonesian archipelago. A range of samples that have
been collected from the data collection is presented in Fig. 1, with the
left most image representing the original image and the rest of the im-
ages in Figure represent some form of pest infestation.

The overall cultivation of the Mongo trees has been affected by a
total of 181 pests including disease-causing pathogens and weeds out of
which, 80% are commonly found in Indonesia (Suputa et al., 2015). The
infestation of these pests tends to cause farm for various parts of the
Mango cultivation including leaves, fruits, branches, stems and roots.
Among these pests, 48 distinct types of pests have been identified to
harm the leaves of the Mango trees globally. Therefore, in the research
presented in the paper, 15 unique categories of pests that are identified
to cause the most harm to Mongo cultivation are being studied and
analyzed. The selected 15-pest categories also result in the structural
deformity of the Mango leaves, facilitating the farmers to quickly
contain the spread of the pest across the farm. Among the various
challenges, researchers’ carryout studies on pest infestation

Blur + Affine transform
Original
dataset and Contrast + Affine Augmented

augmented transform images
dataset
Noise + Affine
I transform
Fig. 2. Data augmentation workflow for training deep-learning

network models.
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management often suffer from the limited amount of resources available
for carrying out large-scale tests for automating the detection and
categorization of pests’ classes. These pests, Apoederus javanicus, Aula-
caspis tubercularis, Ceroplastes rubens, Cisaberoptus kenyae, Dappula tertia,
Dialeuropora decempuncta, Erosomyia sp., Icerya seychellarum, Ischnaspis
longirostris, Mictis longicomnis, Neomelicharia sparsa, Orthaga evadrusalis,
Procontarinia matteiana, and Valanga nigricomnis, are commonly occurring
in Indonesia and have been identified as a threat to the ecolglic wel-
fare among trading partner countries, such as Australia (Australian
Government Department of Agriculture and Water Resources).

As an instance, the population of Apoderus javanicus increases from
August to September (Manjunath, 2018). There is high population
density of Aulacapsis tuberculari during April to August (Salem, Mah-
moud, & Ebadah, 2015). Cisaberoptus kenyae is recorded every year and
the highest populations have been witnessed between .auar_v and
August (Abou-Awad, Metwally, & Al-Azzazy, 2009). The most serious
damage of D. tertia larvae often appears between June and July (Chang
et al., 2018). High populations of Dialeuropora decempuncta is wit-
nessed between March to June and low populations from October to
January (Singh, Maheshwari, & Saratchandra, 2005). Icerya seychella-
rum exists every year, and the population increases from March and
subsequently decreases from September (Mohamed, 2015).

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens,
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been
formally recorded in the literature, but based on the observations in the
mango farms, these pests are always found at each time of observation.
Based on observations in Indonesia the existence of this pest is always
found throughout the year.

There is a severe lack of visual examples from the suspicious
destructor as this pest only appears occasionally but causes severe eco-
nomic damage to the overall Mango cultivation. An overview of the
different types of pests and associated number of image samples
collected from the Indonesia has been tabulated in Table 1. These pests,
Apoderus  javanicus, Aulacaspis tubercularis, Ceroplastes rubens, Cis-
aberoptus kenyae, Dappula tertia, Dialeuropora decempuncta, Erosomyia
sp., Icerya seychellarum, Ischnaspis longirostris, Mictis longicornis, Neo-
melicharia sparsa, Orthaga evadrusalis, Procontarinia matteiana, and Val-
anga nigricomis, are commonly occurring in Indonesia and have been
identified as a threat to the omic welfare among trading partner
countries, such as Australia (Australian Government Department of
Agriculture and Water Resources).

As an instance, the population of Apoderus javanicus increases from
August to September (Manjunath, 2018). There is high population
density of Aulacapsis tuberculari during April to August (Salem et al.,
2015). Cisaberoptus kenyae is recorded every year and the highest pop-
ulations have beeffitmessed between January and August (Abou-Awad
at al., 2009). The most serious damage of D. tertia larvae often appears
between June and July (Chang et al., 2018). High populations of Dia-
leuropora decempuncta is witnessed between March to June and low
populations from October to January (Singh et al., 2005). [cerya sey-
chellarum exists every year, and the population increases from March
and subsequently decreases from September (Mohamed, 2015).

The occurrence of following pests (Erosomyia sp., Ceroplastes rubens,
Ischnaspis longirostris, Neomelicharia sparsa, Mictis longicornis, Orthaga
euadrusalis, Procontarinia matteiana, Valanga nigricornis) have not been
formally recorded in the literature, but based on the observations in the
mango farms, these pests are always found at each time of observation.
Based on observations in Indonesia the existence of this pest is always
found throughout the year. The images depicted in the table represent
the primary data that was captured from infested leaves from Man go
farms. In order to highlight the visual characteristics of the pests, the
collected images were cropped to indicate part of the pest specific
characteristic. The images used in the experiments were taken real time
from infested leaves, without any preprocessing.

Despite the availability of a significant image database, the amount
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Procontarinia
Matteiana

Original Image

Blur 5, 6
Affine y 143

Contrast 1.5, 3
Affine yz 156

Noise 0.3, 0.4
Affine, y 65

Mictis Longicornis

Blur5, 4
Affineyz 234

Contrast 1.5, 3
Affine yz 325

Noise 2, 4
Affiney 78
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Icerva Seychellarum

Contrast 1.5, 3
Affine yz 39

™

Noise 1, 4
Affine y 65

Fig. 3. Sample images in the augmented dataset.

of data is not enough to develop advanced classification models based on
deep learning. In addition, due to the micro-differences between the
various types of pest infestation the use of statistical machine learning
techniques based on pixel-level hand-crafted features has not yielded
high accuracy for the multi-class classification of pests. Therefore, the
use of data augmentation techniques has been adopted for improving the
quality of the data for the training of deep-learning network. The high-
level outline of the image manipulation steps adopted for data
augmentation in this paper is presented in Fig. 2. For each image
collected from the Mango cultivation field, the samples are subjected to
five mathematical operations namely (i) noise; (ii) blur; (iii) contrast
and (iv) affine transformation. The novelty of the proposed approach is
the construction of the sequential and non-sequential workflow in which
each of the mathematical operators is performed in several
combinations.

The implementation framework of the augmentation sequence is
presented in Fig. 2. The original dataset from obtained from the Mango
farm has been subjected to three distinct forms of augmentation process.
The steps have been carefully chosen to ensure the resulting outcome is
subsequently used to train the deep-learning network that is able to
avoid overfitting to the given training dataset. In addition, it is also
worth noting that the selection of the various data augmentation steps
and sequences that have been considered are inspired from the data
collection process as undertaken by the farmers, in which the collected

samples have been found to be rotated, blurred and illumination
changes.

» Noise Addition:

In order to achieve robust generalisation of the image dataset, the
next step in the data augmentation process included in the introd n
of noise levels based on Gaussian distribution as presented in (Das etal.,
2016). In order to ensure the visibility of the random noise the random
number is multiplied by a regularization constant. The mean parameter
is randomly generated between {0.1, 0.2, 0.3, 0.4}, meanwhile the de-
viation parameter between {0,0.1, ..., 0.5}

« Blur:

The next data augmentation process implemented in the paper re-
lates to blur and often represents the lack of auto-focus functionality in
the collection of data samples. Therefore, the blur parameters that are
used to transform the images also follow the Gaussian distribution of the
parameters. This implementation of the Gausian blur was carried out by
kernel size 5 and standard deviation {2, 3, 4, 5, 6, 7}

« Contrast:
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Fig. 4. VGG-16 Architecture with the original head is removed.

Contrast variations (Szeliski, 2010) are generated using contrast
parameter {1, 1.5} and brightness {0,1,2,3,4,5}.

» Affine Transformation:

The affine transformation is used to simulate images rendered from
different camera positions and projections.

Sample outcomes of the data augmentation process are presented in
Fig. 3. Here, three examples from the original dataset has been selected
upon which three data distortion operations, as presented in Fig. 2, have
been applied. In total, for every image in the original dataset, additional
150 images have been generated through the presented augmentation

process.

3.2. Proposed machine learning framework

Following dataset generation step, the next stage in the pro-
cessing relates to the training of the deep-leaming network for the
classification of different types of pests that affect Mango plants in
Indonesia. In order to achieve this, the VGG-16 network architecture
(Simonyan & Zisserman, 2014) has been updated to replace the last
block containing the softmax classification with a fully-connected layer
(FCL) and train the network with the image features extracted from the
VGG-16. The weights of the VGG-16 network have been preserved from
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Fig. 5. The new head of VGG-16.
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the pre-trained model. The extracted features are flattened and used as
input to the FCL layer network which consists of 2-layers. The first layer
is activated by the ReLU function and consists of 256 nodes, followed by
the second layer consisting of 16 nodes activated by softmax. The output
of the network classifies the pest model. The VGG-16 network archi-
tecture is presented in Fig. 4 followed by the proposed training frame-
work depicted in Fig. 5.

3.3. Implementation specification
The overall implementation of the FCL network is achieved in Ten-

sorFlow using Keras library (Chollet Francois, 2015). The training of the
Pest classification has been achieved through by establishing a robust

visual correspondence between the various types of the pests. The
training parameters utilized include a learning rate of 1 x 107" and
epoch of 50. The loss function has been calculated using binary cross-
entropy model.

4. Result and discussion

The overall original dataset has been ﬂded into three subsets
namely (i) training; (ii) validation and (iii) testing with 60%, 20% and
20% respectively. As the quantity of datasets available is not enough to
robustly train the deep-learning network models, the process of data
augmented as presented in Section 3, is carried out. Therefore, the
objective of the experimentation process is to validate both the
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Fig. 6. Dataset distributed used for experimentation, version 0.
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Fig. 8. Dataset distribution used for experimentation, version 2.

performance of the augmentation process and the proposed VGG-16 dataset is divided into 3 parts with 310 images as training data, 103
network improvement with the FCL network for training on both orig- images as validation data, 97 images as testing data. The objective of
inal and augmented dataset for improved classification process. the experiment is to calculate the baseline performance of the system

In order to evaluate the impact of data augmentation, we carry out
three experimental scenarios, as below:

e Version 0: the dataset consists of 510 original images as captured
from the mango cultivation farms in Indonesia. The overall image

when the proposed network is trained using the limited number of
images, validated and tested with originally captured images without
any augmentation. The distribution of the dataset is presented in
Fig. 6.

e Version 1: the image dataset consists of 46.500 samplemtrajni.ng
data following the application of the data augmentation process. The
objective of the scenario is to evaluate the performance of the
network training while the validation and testing sequences




K. Kusrini et al.

Training Accuracy on Epoch 50

1.0

0.8
oy
C 06-
3
o
<
0.4 -
—— ftrain_acc
0.2 -
— val_acc
0 10 20 30 40 50
Epoch #
Fig. 9. Training process for version 0.
Training Accuracy on Epoch 50
1.00 - —-
0.95
0.90
o
- 0.85 -
-
& o080
0.75
0.70 -
—— train_acc
— val_acc
0.65 1 ' 1 ' 1
0 10 20 30 40 50
Epoch #
Fig. 10. Training process for version 1.
Training Accuracy on Epoch 50
100 -
0.95 -
0.90
z
© 0.85 — ftrain_acc
Z —— wval_acc
|9
< 030
0.75
0.70 - /\/\/\/\/\J‘W\/‘\f\/\,_/\z\/\
0 10 20 30 a0 50

Epoch #
Fig. 11. Training process for version 2.
represent the original dataset without data augmentation. The data

augmentation process is carried out using the framework presented
in Fig. 2, and consists of noise addition, blur, contrast and affine

Table 2
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Performance of the proposed network model for 16-class Mango pest

classification.

Experiment Validation Accuracy Testing Accuracy
Version 0 7% 67%
Version 1 T5% BEY
Version 2 T1% T

transformation operation. The overall distribution of the dataset is
presented in Fig. 7.

» Version 2: The dataset consists of 62.047 images in total. It consists of
46.500 training images as a result of the augmentation process of 510
original training images. The validation data consists of 15.450 im-
ages as a result of the augmentation for the original validation data.
We keep the testing dataset without any modification to keep the
original data from the field. The distribution of the dataset is pre-
sented in Fig. 8.

4.2. Experiment result

The training of the VGG-16 network with FCL network layer is pre-
sented in this section. The training of the FCL network layer is carried
out for 50 epochs. The graphical representation of the training accuracy
and the validation accuracy for each experimental run is presented in
Fig. 9, Fig. 10 and Fig. 11 respectively. For the training of version 0, the
training accuracy reaches a saturation at approximately 18 epochs,
while the validation accuracy oscillates between 0.63 and 0.70 starting
from 15 epochs.

Following the training of the version 0, the experimental setup of
version 1, with training performed with the augmented data is presented
in Fig. 10. As opposed to the use of validation data from the augmen-
tation process, the experimental run uses the original data and ground
truth to evaluate the training outcomes. As expected, the validation
results have not been observed to be stabilised, with each the progres-
sion of each epochs. Despite the presence of the original data within the
augmented dataset, the validation accuracy oscillates between 0.75 and
0.70 with a global minimum achieved at epoch 47 resulting in less than
67% accuracy. On the other hand, the training accuracy saturates
around epoch 15, resulting in the zero slope for the training accuracy
plot.

Finally, the training of the third experimental run is presented in
Fig. 11. The validation model uses the augmented dataset like the ones
used in the training of the FCL network with the VGG-16 network fea-
tures extracted from the pre-trained model. The training outcomes
resemble the version 0 model, which also uses a homogenous data
sources for the training and validation process. The oscillations in the
accuracy of validation dataset is minimal and is approximately 0.70 with
0.3 tolerance. The training accuracy saturates around 15 epochs, like the
version 0 and version 1 training models.

4.3. Experimental results

Following the training of the proposed network architecture with
VGG-16 and FCL, the overall performance of the network upon testing is
formulated in Table 2. Based on the experiment, it is shown that the
version 2 experiments which uses augmented images for training, vali-
dation and testing yields the best performance. The improvement in the
accuracy of the experiment is attributed to the overall leaming distin-
guishability of features learnt by the network. Both validation and
testing accuracies represent how well the model can generalize or pre-
dict an unseen data. As opposed to the use of validation data, the testing
data represents the images captured from the real-world data. The
comparative performance of validation accuracy in version 2 experi-
ments showcases the importance of data augmentation process in
training the network model. As mentioned earlier, the version 2
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Fig. 13. Recall of the proposed network architecture for version 0, version 1 and version 2 trained network.

experiment uses the augmented image sequences for both training and consisting of 8 cores. The training model was stored on the SSD M.2 hard
validation, while the version 0 and version 1 experiment run rely on the disk. The overall training period for each of the experimental dataset
use of original data for the validation. We attribute the increase in version 0, version 1 and version 2 is 74 s, 2,175 s and 7, 116 s
performance to the generalisability of the proposed network for learning respectively.

distinguishable features available through the data augmentation pro- In addition to the performance assessment of the classification
cess, which was not available in version 0 and version 1 runs. framework on the cumulative outcome of the proposed data augmen-

In addition, the overall comparison of version 0, version 1 and tation framework, a detailed assessment of each data augmentation
version 2 experimental results for precision, recall and Fl-measure is function is carried out. The objective of this evaluation is to evaluate the

presented in Figs. 12 and 13 and 14. The overall training of the VGG-16 overall contribution of the selected data augmentation function namely
based proposed FCL network was carried out using the Titan V GPU with noise, blur, contrast and affine transform towards improving the clas-
12 GB Memory, capable of processing 640 of tensor cores. The training sification performance of the proposed framework. To achieve this
server was operated with 9th Generation Intel processor 9900 K objective, a set of 18 different data sets were generated, with an

10
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Fig. 14. F1-Measure of the proposed network architecture for version 0, version 1 and version 2 trained network.

Performance of data augmentation technique against each

transformation function
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Fig. 15. F1 measure for blur, noise and contrast evaluation of data augmentation process.

exhaustive combination of all four data augmentation functions. Each
dataset set has been processed through the classification framework
with the training of the network carried out using the data augmented
images. The testing images used for the evaluation remain the same as
version 2 dataset. The proposed scenario achieved the best performance
at 76% of accuracy on contrast and affine transformation experiments.
InFig. 15, a percentage comparison of each data augmentation function
against the classification accuracy is evaluated against the baseline
classification performance when applied without the data augmentation
process. The analysis of results highlights the disproportional influence

11

of the data augmentation functions in enhancing the classification per-
formance. The application of contrast and affine transform results in an
overall improvement of 13.43% in the classification accuracy. However,
the application of noise and blur has resulted in the decrease of classi-
fication accuracy by 1.49%. Similar decrease in classification accuracy
of 2.98% is also noted for the application of blur and affine transforms
along with the application of noise, blur and contrast. The detailed
evaluation of the result indicates the positive outcome of the two data
augmentation functions namely contrast and affine, which has led to the
overall improvement of the classification accuracy. Furthermore, the
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Fig. 16. Performance of data augmentation against training data.

application of the contrast function upon the images are limited to the
scope of natural light in which the images are expected to be captured.
This is achieved by the use of multiplication and addition transformation
function consisting in total of 12 filters with o ranging from 1 to 1.5 and
p ranging between 0 and 5 was applied on the original image. Similarly,
the application of the affine geome ansform is carried out using
three dimensional rotational across x, y and z axis. The rotational
transform is applied throughout the 360 degrees in both y an is. The
final dataset has been filtered for transpose images as they do not add
value to valuable leaming features. The implementation of the data
augmentation functions was carried out using OpenCV Library (OpenCV
Library).

Following the determination of disproportional influence of data

€« 1 selected

augmentation function upon the multiclass pest classification frame-
work, an additional experiment has been carried out that maps the
classification performance against the quantity of the training data. As
noted in the previous experiment, the application of contrast and affine
transform across y- and z-axis has yielded an improvement of 13.43%
improvement against the baseline evaluation without tmse of data
augmentation framework. Thus, in this experiment, our aim is to eval-
uate the quantity of the training data required to achieve the best per-
formance in the multi-class pest classification. Therefore, to achieve this
objective, the angle of rotation in y- and z-axis is systematically carried
out for each of the 310 images from the training dataset. The training
data was generated progressively by systematic variation in the number
of rotations applied across two axes with a maximum of 100 different

-
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Fig. 17. Mobile (Android) application screen as used by Mango Farmers.
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Fig. 18. Segmented image regions consisting of pests.

combinations applied across 360 degrees. For each of the trans-
formation, the resultant dataset was filtered against transpose images as
they do not add any additional value. The F1-measure for each training
dataset is presented in Fig. 16. The classification performance saturates
at 77%. Following the exhaustive list different angle variations
applied on both y- and x-axes, further increase in the training data has
saturated the performance of the multi-class pest classification frame-
work. The graphical model represents the variations of the pest classifier
which peaks at 83,046 training samples. The computational time
required for each dataset is also presented along the z-axis.

5. Summary discussion and future work

Following the results presented, Orysomia sp has resulted in 0%
precision and recall on the original dataset testing (version 0). However,
the classification performance of the said class improves upon the
application of the augmentation process, as verified in version 1 and
version 2 runs of the experiments. Similarly, the overall classification of
the multi-class pests has shown to have improved by the proposed VGG-
16 based FCL network model, upon the application of the augmentation
process. The overall multi-class classification of 16-class classification
model has yielded in an i ase of 13.43% accuracy in comparison to
the baseline performance of the proposed approach. The increase in the
performance is intuitively attributed to the use of data augmentation
process with the combination of contrast and affine transform. Although
in the literature, there are reports of using data augmentation process for
improving the classification performance from 0.2% to 4.6% (Kobaya-
shi, Tsuji, & Noto, 2019), to the best of our knowledge, such techniques
have not been reported for multi-class pest classification. The process of
the augmentation as proposed with the cascaded approach of geometric
transformations of the pest infected data has yielded improved the
robustness of the training model. Following the evaluation of the various
models, the best performing model has been selected for the integration
into the mobile platform, which has been used by the Mango farmers in
Indonesia for the identification of pest categories. The implementation
of the various user interactive screens has been presented in Fig. 17. In
order to reduce the operational cost of the overall proposed framework,
the evaluation of the testing framework has been achieved on the CPU
system (with the training carried out on the GPU units). The cloud-based

deployment of the CPU-only Tensorflow with Keras library has result@

in the computational time between 2 s to 2.99 s for the classification ol
the input image and provide a response to the mobile application.

Following the review of the results, an extended approach is also
being considered for enhancing the gquality of the data augmentation
process. In this approach, the appearance of the pest regions is
segmented as foreground along with the structural deformity experi-
enced by the leaves. The segmented regio the pest are subjected to
data augmentation framework presented in the paper. The training of
the deep-leaming network is carried out with the superimposed
augmented pest images as foreground against the naturally appearing
background regions. An initial outcome of such an approach is presented
in Fig. 18, The training process to be carried out on such dataset will
facilitate the deep-learning models to distinguish between the fore-
ground pest and the background images, thus leading to mmprove—
ment in performance accuracy. In addition, we will also evaluate the
performance of the network training against the overfitting as presented
in Figs. 9-11. The approach will be further invested as a part of our
ongoing research activity.
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6. Conclusion

In this paper, three contributions have been presented. The study of
augmentation process for increasing the limited availability of pest
infected dataset complemented by the proposed architecture for the
training of multi-class pest classification model. The proposed classifi-
cation framework extends the VGG-16 framework and extracted the
deep-learning features from the network. The extracted features are
further trained through a 2-layer fully connected network for achieving
the classification outcome. The systematic evaluation of the proposed
approaches was achieved based on three different datasets. The com-
bination of these datasets includes the classification on the original data
without augmentation process resulting in 67% of the overall accuracy,
while the evaluation on the augmented data process has resulted in 76%
overall accuracy with the application of contrast an ne transform.
The additional experimental results also indicate the impact of different
data augmentation functions on the classification performance. The final
contribution provides an outline of the overall data workflow process
integrated as a mobile application that can be directly used by the
Mango farmers in Indonesia. The future k will include a detailed
analysis of the deep-leaming features extracted from multiple-pre-
trained models and evaluate the quality of these features. In addition,

network architecture models will be further developed towards
improving the performance of the classification model.
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